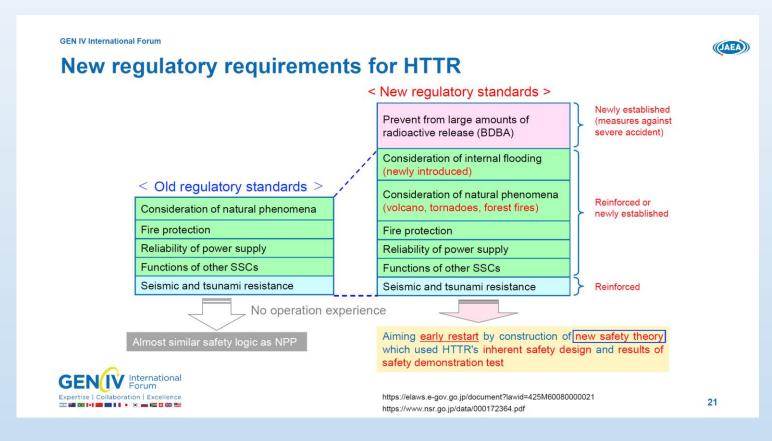


Experience of HTTR licensing for Japan's New Nuclear Regulation

Summary / Objectives:

The new safety theory which used HTTR's inherent safety design and results of safety demonstration test has been approved by Nuclear Regulation Authority (NRA). As a result, JAEA obtained permission by NRA toward the restart of the HTTR in conformity to the New Regulatory Requirements on 3rd June 2020. HTTR is expected to be restarted without any additional reinforcement due to its own high-level inherent safety features. Following the restart of HTTR, number of activities are planned: Safety demonstration test in OECD/NEA LOFC project; Technology demonstration test of heat utilization system; International cooperation and human-resource development utilizing the HTTR.

Meet the Presenter:


Dr. Etsuo Ishitsuka is the general manager of the HTTR Reactor Engineering Section at the Department of HTTR project in JAEA. He earned his Doctorate of Engineering from the University of Tokyo in 1999. His current works are the technology developments related to core management and operation. His team was in charge of the seismic evaluation of facilities and beyond design basis accidents in this licensing.

1. New regulatory requirements for HTTR

Comparing with the old regulatory standards, the new regulatory standards for HTTR are explained.

2. Towards the restart of HTTR

The activities towards the restart of HTTR on licensing are summarized.

GEN IV International Forum

Towards the restart of HTTR

- Following the nuclear accident at the Fukushima Daiichi nuclear power station on March 11, 2011, revised regulatory requirements were issued by the Nuclear Regulation Authority (NRA) in July 2013.
- JAEA had submitted the application including evaluation results satisfying the New Regulatory Requirements to the Nuclear Regulation Authority (NRA) on Nov. 26th, 2014.
- Through many discussions with the NRA, on June 3rd, 2020, JAEA obtained the permission by the NRA for changes to Reactor Installation of the HTTR.
- It is targeted to restart HTTR in July 2021.

Calendar year	2014	2015	2016	2017	2018	2019	2020	2021
Permission of changes to reactor installation							3, Ji	une
Operational Safety Programs								
Approval of the Design and Construction Method								
Inspection						Pre-service	inspection	
Restart							Re	start 🔻
pertise Collaboration Excellence						Requirements inclu FORUM 2021, 2-4		Process

(JAEA)

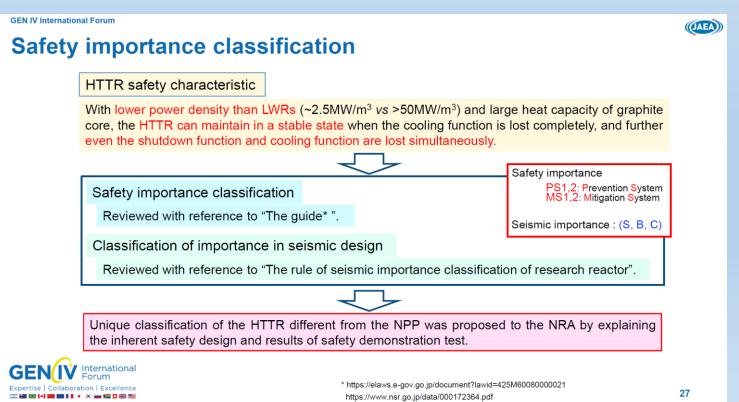
25

3. Safety requirements

Comparison of safety requirements between Modular HTGRs and LWRs is shown.

GEN IV International Forum

Safety requirements


Heat removal from core Passive cooling from the outside surface of reactor vessel (Passive cooling) (Forced cooling) Confinement of radioactive materials Fuel integrity In operational states and in accident conditions In operational states (normal operation and AOO) Containment system Containment (i.e., vented low-pressure containment) Containment Vessel	Safety requirements		Modular HTGRs	LWRs	
Reactor shutdown means (Inherent design features is regarded as one of means) At least two diverse and independent systems Heat removal from core Passive cooling from the outside surface of reactor vessel (Passive cooling) In shutdown states: Residual heat removal (Forced cooling) Confinement of radioactive materials Fuel integrity In operational states and in accident conditions In operational states (normal operation and AOO) Containment system Containment (i.e., vented low-pressure containment) Containment Vessel	0		DEC without significant fuel degradation	°	
Heat removal from core Passive cooling from the outside surface of reactor vessel (Passive cooling) (Forced cooling) Confinement of radioactive materials Fuel integrity In operational states and in accident conditions In operational states (normal operation and AOO) Containment system Containment (i.e., vented low-pressure containment) Containment Vessel	Reactor shutdown		means (Inherent design features is		
Confinement of radioactive materials Fuel Integrity conditions AOO) Containment system Confinement (i.e., vented low-pressure containment) Containment Vessel	Heat removal from core		reactor vessel	In accident condition : Emergency core	
materials Containment system Confinement (i.e., vented low-pressure containment) Containment Vessel		Fuel integrity	· · · · ·	In operational states (normal operation and AOO)	
				Containment Vessel	
Additional specific considerations Mitigation of air and water ingress into core during accidents -	Additional specific considerations		Mitigation of air and water ingress into core during accidents	-	

"HTTR Licensing Experience and Commercial Modular HTGR Safety Design Requirements including Coupling of Process Heat Applications", "Towards innovative R&D in civil nuclear fission" SNETP FORUM 2021, 2-4 February 2021

4. Safety importance classification

Unique classification of the HTTR different from the NPP was proposed to the NRA by explaining the inherent safety design and results of safety demonstration tests.

(JAEA)

5. HTTR safety review results by NRA (1/2)

The results of HTTR safety review by NRA related to earthquake, tsunami and SSCs integrity are explained.

GEN IV International Forum

HTTR safety review results by Nuclear Regulation Authority (1/2)

Major discussion item		Regulatory review condition	Regulatory review results	Additional countermeasures	
	Design seismic ground motion	Raised from 350 gal to 973 gal			
Earthquake Re-evaluation of seismic design classification		 Some of structures, systems and components (SSCs) were downgraded taken into account the results of safety demonstration tests. Core heat removal: S class to B class Reactor internal structure: S class to B class. 	No large-scale reinforcement due to the degradation of the SSCs.	Not required	
Tsunami evaluation		Assumption of tsunami height for evaluation: 17.8 m from sea level	Tsunami does not reach the site because siting location is 36.5 m high from the sea level.	Not required	
Evaluation of integrity of SSCs against natural phenomena such as tornado, volcano, etc.		 Design basis tornado wind speed: 100 m/s Thickness of descent pyroclastic material by volcano: 50 cm 	 All SSCs needed to be protected are installed inside the reactor building Fire proof belt necessary around reactor building. 	Fire proof belt was required.	
GEN(IV Int Fo	ternational orum Excellence	"HTTR Licensing Experience and Commercial Modular HTG Heat Applications", "Towards innovative R&D in civil nuclear			

6. HTTR safety review results by NRA (2/2)

The results of HTTR safety review by NRA related to fire, reliability of power supply and BDBA are explained. HTTR will restart without significant additional reinforcements due to its inherent safety features.

GEN IV International Forum

HTTR safety review results by Nuclear Regulation Authority (2/2)

Major discussion item	Regulatory review condition	Additional countermeasures				
Fire	Burnable materials in and around the reactor building was additionally evaluated.	Cable protection against fire was required.				
Reliability of power supply	Emergency power supply failure was evaluated.	Decay heat is removable from the core without electricity.	Only and the same			
Beyond design basis accident (BDBA)	 Postulated BDBAs DBA + failure of reactor scram DBA + failure of heat removal from the core DBA + failure of containment vessel 	Only portable power generator for monitoring during accident is required.				
(DBA : Design Basis Accident)						
	HTTR will restart without significant additional reinforcements due to					

its inherent safety features.

(JAEA)