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Maximizing Clean Energy Integration:
The Role of Nuclear and Renewable
Technologies in Integrated Energy Systems

Summary / Objectives:

______________________________________________________________________________________________________________

Many cities, states, utilities, and public commissions are setting energy standards
that aim to reduce carbon emissions. In order to realize a clean and resilient
energy future, new methods of energy production, distribution, and use will be
required. The primary focus of the DOE Office of Nuclear Energy (DOE-NE)
Program on Integrated Energy Systems, led by researchers at Idaho National
Laboratory (INL), has been to assess the potential of integrated energy systems to
enhance the flexibility and utilization of nuclear reactors alongside renewable
generators and, thereby, to maximize the use of the clean energy provided by
these systems. This work begins with the question: “What goals are we trying to
achieve, and how will the produced energy be used?” These questions must be
addressed within the context of a specific deployment location, which has
implications relative to the electricity market structure, supply, and demand;
available feedstock for industrial processes; and available product markets.
Product streams, ranging from potable water to hydrogen, fertilizer, synthetic fuels,
and various chemicals, have been considered. Each product stream has its own
market and market drivers and its own geographic location that would maximize
profitability. Some of these products would only require electricity to support
production, while others require both thermal and electrical energy. This webinar
highlights work led by INL, in collaboration with other national laboratories and
industry partners, to evaluate integrated energy system options that utilize nuclear
energy in new ways. By working with key collaborators in the nuclear industry,
these analytical studies are now becoming a reality in demonstration projects.

Meet the Presenter:

Dr. Shannon Bragg-Sitton is the Lead for Integrated Energy
Systems (IES) in the Nuclear Science & Technology Directorate
at Idaho National Laboratory (INL). Within this role, Shannon
serves as the co-Director for the INL Laboratory Initiative on IES,
which includes focus areas for thermal energy generation,
power systems, data systems, and chemical processes/industrial
applications. Shannon is also the INL lead for the DOE Applied
Energy Tri-Laboratory Consortium, which includes INL, the
National Renewable Energy Lab, and the National Energy
Technology Lab.



https://gif.jaea.go.jp/webinar/index_eng.html#webinar045
https://gif.jaea.go.jp/webinar/index_eng.html#webinar045
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Graded approach to identify design.

Process model code (process engineering + economics)

Dynamics model code (plant dynamics + control)

System optimization (system configuration + physics + economics)

+Al (used to develop surrogate models for complex physical models)

Energy System Modeling, Analysis, and Evaluation
for Energy System Optimization

Graded approach to identify design, and
evaluate hybrid system architectures

Aspen Plus® and HYSYS® Modelica®, RAVEN
Process Models Aspen Dynamics® (INL System Optimization)
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IES: Artificial Intelligence (Al, Supervised Learning) Generation and
Validation

» Addresses computational cost of
probabilistic analysis : Simulation executed using Al

+ Al is used to develop surrogate f AR — o
models for complex, computationally 2 | |
expensive, physical models - |

« Concepts such as the hybrid model  _
in RAVEN are currently being 2 @/T"“"'—_'—{ | I T
extended to time dependent Al 5; — | '
(supervised learning) & Simulation executed using the original model

Al validation is being tuned for these = % 50 100 150 200
. . Number of Hybrid Model Executions
applications

* Needed 1000 simulations to generate a good statistic
» Al learned to replace the original simulation %] IES
» Only about 200 simulations were executed using the real model °:>
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https://ies.inl.gov



Examples Optimized Hybrid System Performances
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+ System design optimization using time histories for one year
(Nuclear, Hydrogen, Gas turbine, Battery, Wind)

+ Repurposing existing plant for H2 production via high temperature electrolysis;
use of produced hydrogen for multiple off-take industries

+ LWRs with H2 production using low-temperature and high-temperature electrolysis

Example Optimized Hybrid System

INL-Developed Toolset

Performance Results
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« System design optimization using time
histories for one year

* Results shown for a selected time history, one ™

week period (hourly resolution)

« Optimized component capacities
* Nuclear Reactor 300 MW,
« Hydrogen Plant Capacity 120 MW,

(shown as negative — electricity input;
70% turndown limit; H, market price - $1.75/kg-H,)
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+ Gas turbine 200 MW, e
 Electric battery 100 MWh
* Wind penetration 400 MW, 100

(100% of mean demand, installed
capacity, 27% capacity factor)
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« Penalty function applied for over or under
production of electricity.
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Recent Hydrogen Production Analyses for Current Fleet LWRs

produce non-electric products:

« Evaluation of Hydrogen Production Feasibility for a
Light Water Reactor in the Midwest
Repurposing existing Exelon plant for H2 production via
high temperature electrolysis; use of produced
hydrogen for multiple off-take industries (ammonia and
fertilizer production, steel manufacturing, and fuel cells)
(INL/EXT-19-55395) c\ > IES

f/ e Imtegrated Energy Systems

« Evaluation of Non-electric Market Options for a
Light-water Reactor in the Midwest
LWR market opportunities for LWRs with a focus on H2
production using low-temperature and high-temperature
electrolysis; initial look at polymers, chemlcals and
synfuels (INL/EXT-19-55090) 1

https:/fies.inl.gov

INL issued public-facing reports on in FY 19 that provide the foundation for demonstration of using LWRs to

Example: Analysis results for H2 production, compression and

delivery prices to meet ammonia plant demand.
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