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DESIGNING FUTURE
ENERGY SYSTEMS

What goals are we trying to achieve?

How will energy be used?

What role(s) can each energy source fill?

https://ies.inl.gov
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Global Reality 

7

The Next Generation of Federal Clean Electricity Tax 
Credits 
Federal policy makers should design a new generation of 
tax incentives… to decarbonize the US electricity sector 
almost entirely by midcentury—an integral step in 
decarbonizing the overall economy to combat climate 
change.
By Dr. Varun Sivaram and Dr. Noah Kaufman
https://energypolicy.columbia.edu/research/commentary/nex
t-generation-federal-clean-electricity-tax-credits

A major US utility is moving toward 100% clean energy 
faster than expected
Xcel Energy…committed to going completely carbon-free by 
2050…carbon-free includes not only renewables but also 
advanced nuclear power plants and fossil fuel power plants 
with carbon capture and sequestration…
By David Roberts, Vox
https://www.vox.com/energy-and-
environment/2018/12/5/18126920/xcel-energy-100-percent-
clean-carbon-free

Three More Nuclear Plant Owners will Demonstrate 
Hydrogen Production
The projects…aim to improve long-term competitiveness of 
the nuclear sector...
By Sonal Patel
https://www.powermag.com/three-more-nuclear-plant-
owners-will-demonstrate-hydrogen-production/

https://energypolicy.columbia.edu/research/commentary/next-generation-federal-clean-electricity-tax-credits
https://www.vox.com/energy-and-environment/2018/12/5/18126920/xcel-energy-100-percent-clean-carbon-free
https://www.powermag.com/three-more-nuclear-plant-owners-will-demonstrate-hydrogen-production/
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Go to the article

Two essential themes: 

Clean energy commitments are rapidly gaining 
popularity. Our research identified a total of 121 portfolio 
standards and other commitments to clean energy since 
1983. But a whopping 58% of them were adopted just 
since 2016.

Climate leaders want more technology options to 
choose from. Prior to 2016, 90% of commitments were 
exclusive to renewable energy. That trend has almost 
completely reversed since then, with 65% of states, 
utilities, and major cities now embracing “technology-
inclusive” commitments like clean energy standards that 
take advantage of nuclear power, carbon capture, and 
other carbon-free options.

https://www.thirdway.org/graphic/clean-energy-targets-are-trending
https://www.thirdway.org/report/clean-energy-standards-how-more-states-can-become-climate-leaders
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U.S. Utilities with Commitments to Reduce Emissions

Utility Clean Energy Goal Target 
Date Utility Clean Energy Goal Target Date

Alliant Energy 80% CO2 Reduction 2050 IDACORP 100% Carbon-Free 2045

Ameren Missouri 80% CO2 Reduction 2050 MGE Energy Net-Zero Carbon 2050

APS 100% Carbon-Free 2050 MidAmerican Energy 100% Renewable Target None

AVANGRID Carbon Neutral 2035 National Grid 80% Carbon Reduction 2050

Avista 100% Carbon-Free 2045 NiSource 90% CO2 Reduction 2028

CMS Energy 90% CO2 Reduction 2040 OG&E 50% CO2 Reduction 2050

Dominion Energy Net-Zero CO2 2050 PG&E 80% GHG Reduction 2050

DTE 100% Carbon-Neutral 2050 Portland General 
Electric 100% Carbon-Free 2050

Duke Energy Net-Zero CO2 2050 PSEC Net-Zero Carbon 2050
Entergy 50% Emissions Reduction 2030 Southern Company Net-Zero Carbon 2050

Evergy 80% CO2 Reduction 2050 Tucson Electric Power 30% GHG Reduction & 30% 
Renewables 2030

First Energy 90% CO2 Reduction 2045 WEC Energy Corp 80% CO2 Reduction 2050

Great River Energy 50% Renewable 2030 Xcel Energy 100% Carbon-Free 2050

Hawaii Electric Light 100% Renewable 2045
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Consequences of Increasing Variable Renewable Power Generation 
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Variation in wind output increases 
net load ramp rate (Increases in this 

period from 4,052 MW/hour to 
4,560 MW/hour)

Uncertainty in wind 
output increases 

uncertainty in net load to 
be met with conventional 

generators

Ramp Range (Increases in this 
two-week period from 19.3 
GW/day to 26.2 GW/day)

Energy storage is Needed for shift 
excess generation to evening

Thermal power plants will be curtailed unless the 
energy can be used for non-electricity productionFigure courtesy NREL

Figure developed by INL
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IES: Volatility Increase with Increasing VRE

Synthetic time histories for wind and 
demand have been used to compute 
the sigma (in %) of net demand

While only one wind source was used 
(thus not taking advantage of spatial 
decorrelation), the increase of volatility 
is remarkable
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What is the resource potential in a selected region?

Figure excerpts from the 
2014 Handbook of Small 
Modular Nuclear 
Reactors, Ch. 13, “Hybrid 
Energy Systems.”

Solar EnergyWind Energy

Reactor Siting 
Options
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What is the Future of Nuclear Energy?

MIT Future of Nuclear Energy Study (2018): Key Findings 
• The world faces the new challenge of drastically reducing 

emissions of greenhouse gases while simultaneously expanding 
energy access and economic opportunity to billions of people

• A variety of low- or zero-carbon technologies can be employed in 
various combinations to meet the growing energy demand, but…

• Without contribution from nuclear, the cost of achieving deep 
decarbonization targets increases significantly

• The least-cost portfolios include an important share for nuclear, the 
magnitude of which significantly grows as the cost of nuclear drops 

https://energy.mit.edu/wp-
content/ uploads/2018/09/The-
Future-of-Nuclear-Energy-in-a-
Carbon-Constrained-World.pdf

International Energy Agency, Nuclear Power in a Clean Energy 
System (May 2019)
• Despite significant renewable energy growth over the last 20 years, the 

overall contribution of clean energy supply to electric generation has not 
changed

• In the U.S. and many parts of the world, low cost natural gas is displacing 
nuclear generation

• NG turbines are scalable, allow rapid ramping – complement to wind, solar

https://www.iea.org/reports/n
uclear-power-in-a-clean-energy-
system

https://ies.inl.gov

https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf
https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system
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18% of the U.S.’s GHG 
emissions are direct 
emissions from the industrial 
sector.

Alternative energy sources 
are limited due to heat 
delivery requirements.

Decarbonizing the Industrial Sector is Challenging

Breakdown on U.S. Emissions:
38% Electricity
34% Transportation
18% Industrial
6% Residential
4% Commercial
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Planning our Future Energy 
Resources: Energy Market 
Modeling
Introduction to energy market modeling and how it is used

Capacity Expansion Models (CEMs) for long-term energy mix assessment
Production Cost Models (PCMs) for market and revenue assessment
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• Capacity Expansion Models (CEMs)
• Used to model evolution of system of electricity generation assets
• Considers change in demand, retirements and completion of construction projects to 

determine if additional capacity is needed in future years
• If so, determines lowest cost capacity additions to meet projected demand (including reserves), with 

consideration of construction lead time
• Some models include other parts of the economy to determine demand

• Production Cost Models (PCMs)
• Models the current year in much greater detail
• Predicts which existing facilities will operate when to meet demand

• Selection based primarily on lowest short-run operating costs
• Constrained by physical limitations of grid, dispatchability, start-up time, ramp rates, etc.

• Outputs include electricity costs, plant revenues, reserve margins, etc.

CEMs and PCMs 
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Grid Timescale

Capacity Expansion 
Models

Production Cost 
Model (dispatchers)Approximations Approximations

Changes in the portfolio mix (VRE, batteries, decrease of large generators) and 
technological assumptions (IES, plant lifetime, etc.) are outdating current models 

Transforming the Nation’s Electricity System: The Second Installment of the QER | January 2017 
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Optimal Portfolio
(least cost)

Electricity Total Cost

Feedstock 
Cost 

Projections

Current 
Portfolio

Technology 
Cost 

Projections

Scenario Modeling: Capacity Expansion Model (CEM)

Policy makers

Investors

“What if” 
analysis

Utility IRP 
(Integrated 
Resource Plan)

• Covers the whole U.S. or large 
U.S. regions

• The prediction of the portfolio mix 
evolution is highly sensitive to 
initial conditions

• Creates a nonlinear feedback of 
externalities that are not modeled

• Time horizon: 30 or more years

• Designed for long-term economic 
equilibrium
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• Outputs:
• Projected portfolio composition
• Increase/decrease in cost of electricity
• CO2 emissions

• “What if scenarios” are considered with respect to
• Policy: Impact of current and potential new policies that constrain the portfolio 

composition
• Technology maturation: Impact of changes in technology costs and capabilities
• Resources: Changes in the feedstock (e.g. gas) supply availability and price

CEMs: What type of information is generated?
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• Used by federal organizations to inform policy makers concerning how achievable 
goals may be, and at what costs; possible goals include:

• CO2 emission limits
• energy independence
• portfolio diversification
• grid reliability

• Research organizations (e.g., DOE offices) – to prioritize the research budgets to 
meet technology deployment goals 

• Large private companies – to prioritize research and capital investments, and as input 
to energy planning

• International organizations (e.g., OECD, IAEA) and developing nations also rely on 
scenario analyses in development planning

How results from CEMs are used

Scenario studies have a strong 
feedback mechanism!!
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Optimal unit commitment
Electricity cost (only marginal cost)

Information on ancillary services

Grid 
Topology

Current 
Portfolio

Variable 
Costs

Production Cost Models (PCMs)

• Cover large regions 
with different levels of 
fidelity

• Time horizon: 1 year
• Independent from 

deregulated or 
regulated market 
assumption
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• Testing dispatch strategies
• Evaluating grid congestion problems
• Predicting unit revenues
• Reserve adequacy estimation
• Example, Exelon Case:

How Production Cost Models are Used

Capacity Expansion Model, ReEDS (NREL): portfolio evolution

2026 2030 2042 20382034

PLEXOS PLEXOS PLEXOS PLEXOS PLEXOS 

RAVEN/HERON
Optimal design
NPV project 

Production Cost 
Model 
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Nuclear technology representation

• Nuclear power plant sizes

• License extension

• Economic dispatch (i.e., load following)

• Progressive capacity addition (multi-
module SMRs, uprates, etc.)

Market

• Least cost vs. market driven

• Outside market subsidy

• Market elasticity (only some tools)

Definition of global system costs

• Waste management and environmental 
impacts

• Spent fuel management
• Environmental impacts 

management (e.g. 
decommissioning, CO2 emission) 

• Life cycle costs

Areas for Possible CEM Improvements in the Approach to 
Nuclear Energy Technologies
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Areas of Possible Improvements (CEM): Multiscale Approximation

Capacity Expansion 
Models

Production cost 
Model (dispatchers)Approximations Approximations

To capture the cost/benefit of changes in the portfolio all scales need to be accounted for

What is the impact of the VRE?

Multiscale approximation 
is important to have a 
“fair” competition 
among generators
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Capacity Expansion 
Models

Production cost 
Model (dispatchers)

Nuclear

Hybrid/Flex

Approximations Approximations
Multiscale approximation 
matters directly to 
nuclear

Areas of Possible Improvements (CEM): Multiscale Approximation
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• Similar to CEMs, PCMs contain multiple time scale approximations
• Not used to cover more than one year (computational limit), 

therefore neither grid expansion nor capacity portfolio changes can 
be assessed

• Ramp rates are linear (missing important memory effects)
• Uncertainties in demand and VRE production are seldom 

accounted

Areas of Possible Model Improvements for PCM
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• Modelling of the techno-economic aspects of nuclear technology can be improved; this appears 
feasible with the currently available CEMs

• Current CEMs mostly model nuclear with one option – a GW-scale LWR operating as baseload with a 
40-60 year life

• Key additions would include modeling of more types and sizes of reactors, load following, etc., and 
assessment of modeling assumptions for any bias and estimate impacts

• Market representation can be improved; this appears feasible with the currently available CEMs

• Total life cycle cost, while more challenging, provides a more balanced approach for evaluating 
competing generation technologies

• Risk metrics (uncertainties) should be introduced

• Multiscale approximations are sensitive to portfolio mix, which might lead to bias in the predictive 
results

Energy Market Modeling Takeaways
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ANALYSIS OF INNOVATIVE NUCLEAR 
TECHNOLOGIES FOR 

CURRENT AND FUTURE ENERGY SYSTEMS
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Maximizing energy utilization, generator profitability, and grid 
reliability and resilience through systems integration
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New Technology for Energy Transport, Conversion & Storage with IES

Technology Development Needs & 
Opportunities:

Integrated Energy Systems Involve:

• New energy storage technologies (thermal, 
chemical, and electrical)

• Thermo-Electrical chemical conversion 
processes

• Modern advanced informatics and decision 
systems for massive data

• Embedded sensors for health monitoring and 
cyber security 

• Thermal, electrical, and process intermediates 
integration

• More complex systems than co-generation, 
poly-generation, or combined heat and power

• May exploit the economics of coordinated 
energy systems

• May provide grid services through demand 
response (import or export)
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• Direct tie to plant substation for electricity dispatch
• Independent steam loop to support thermal duties (e.g. storage, industrial plants)
• Produce energy carriers such as hydrogen and other chemical feedstock

A new paradigm for nuclear energy

Process Intensification
 Steam Electrolysis/Co-Electrolysis

(HTSE)
 Advanced catalysis 
 Electro/thermal conversion applications

Evolutionary Direct Conversion 
 Proton-conducting ceramics
 Multi-functional micro chemical

reactors
 Proton initiating CO2 reduction
 Nitrogen fixation

Energy
Transport

Clean Energy
Production

Syngas &
Hydrogen
Chemical 
Feedstock

Polymers &
Mixed 
Alcohols

Process Electrification
 Water Electrolysis (AE and PEM)
 Desalination with RO
 Non-thermal plasmas excitation

Fresh 
Water
Hydrogen
Reformate

Polymers

Lubricants

Fuels

Fertilizers

Specialty
Chemicals

Water
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DOE-NE Crosscutting Technology Development IES

32

Mission:  Maximize energy utilization, generator profitability, and grid reliability and resilience through novel systems  integration 
and process design, using nuclear energy resources across all energy sectors in coordination with other generators on the grid.

Vision: A robust and economically viable fleet of light-water and advanced nuclear reactors available to support US clean 
baseload electricity needs, while also operating flexibly to support a broad range of non-electric products and grid services.

Goals: The IES program develops tools and technologies that will lead to demonstration of multiple integrated energy systems 
that have a clear path toward commercialization. Timelines follow the associated reactor concepts and designs (current fleet 
now, SMRs 1-5 yrs, non-LWR 5-15 years).

Strategic R&D Areas:
• System Simulation. Develop and exercise an ecosystem for 

modeling, analysis, optimization of IES that can accommodate 
various reactor types, renewable technologies, and energy users.
 Economic Analysis. Establish a reference capability to validate 

current practices in valuing nuclear energy in the energy 
market (electric and non-electric).

• Experimental Evaluation. Establish and operate a fully-functional 
and diverse non-nuclear facility for model validation and initial 
technology demonstration.

Issued updated IES 2020 Roadmap 
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IES—A key opportunity for flexibility
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Evaluation of Candidate IES

• Technical Feasibility:
Tightly coupled systems 
involve dynamic 
exchange of energy 
streams, process 
conditions data, and 
diagnostics/ prognostics 
control commands.

• Economic Feasibility 
Requires Efficient 
Capital Utilization: 
The impact of improved 
capital utilization, 
increased reliability, and 
enhanced maintainability 
on overall plant revenue 
must be characterized 
and understood.

Thermal 
Energy

Fuels

GW-hr Battery 
Storage

Electrolysis

O2 H2

Storage

Thermal Energy 
Generation

Thermal or 
Mechanical Energy 

Storage

Consumer
ProductsNatural 

Resources
(Gas, Oil, Coal, Biomss Ore)

Conversion Plant

Power GenerationPower Generation

Grid

Wind Farm

Wind Farm

Wind Farm

Electricity

Low
Grade

Thermal
Energy

Reduced energy 
storage required

Clean heat dynamically 
maneuvered for industrial use 

and power generation

Variable renewables 
penetration can be 

effectively managed

Intermediate H2 and 
other chemicals/ 

products produced
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Modelica®, 
Aspen Dynamics®  

RAVEN
(INL System Optimization)

Aspen Plus® and HYSYS®

Process Models

Graded approach to identify design, and 
evaluate hybrid system architectures

Dynamic modeling addresses
technical and control 

feasibility

System modeling
addresses whole-system

coordination

Process modeling addresses 
technical and economic 

value proposition

Energy System Modeling, Analysis, and Evaluation 
for Energy System Optimization

Consideration of Resource—Technology—Economic—Market Potential
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Technical & Economic Assessments (TEA)

Resource 
Potential

Technology
Potential

Economic 
Potential

Market 
Potential

o Market size
o Resource availability
o Resource attributes
o Infrastructure 

requirements

o Thermodynamics
o Performance
o Systems integration

and control

o Pro forma
o ROI / IRR
o Cash Flow

o Competition
o Policy, Regs
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• Provide high fidelity system model 
for short time scales

• The IES program has developed 
several detailed dynamic models:

• LWRs (PWRs, SMRs)
• High Temperature Steam Electrolysis (H2)
• Reverse Osmosis
• Gas Turbine
• Batteries

• New models are currently being 
developed

• Heat storage
• Advanced reactors

IES: Physical Asset Models

HTSE Modelica Model
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• Addresses computational cost of 
probabilistic analysis

• AI is used to develop surrogate 
models for complex, computationally 
expensive, physical models

• Concepts such as the hybrid model 
in RAVEN are currently being 
extended to time dependent AI 
(supervised learning)

• AI validation is being tuned for these 
applications

IES: Artificial Intelligence (AI, Supervised Learning) Generation and 
Validation

• Needed 1000 simulations to generate a good statistic
• AI learned to replace the original simulation
• Only about 200 simulations were executed using the real model

Simulation executed using AI

Simulation executed using the original model
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• Ability to accommodate a more complex set of nuclear generation options, timelines for capacity addition, and capital 
expenditures 

• Capability of a nuclear power plant to be dispatched based on marginal cost, i.e., allowing for load following 
(shallow/deep)

• Assess which direct and indirect costs and benefits are considered and possible impacts of excluded costs and 
benefits on the optimal portfolio

• CEMs are based on a least system cost approach; assess how, in deregulated markets, this calculation approach may 
miss the actual basis used by decentralized decision makers to construct or retire plants

• Assessment of the time slice approximation to determine the impact on reserve requirements, ancillary systems, 
inertia, etc., and on market share projections of generation technologies and storage; explore options for improvement

• Inclusion of Integrated Energy System approach

• Volatility absorption (resulting in decreased need for ancillary services, reserves, etc.)

• Additional revenue streams (e.g., non-electricity products, heat applications)

• Model uncertainties need to be quantified, and the impact of these uncertainties needs to be characterized and 
communicated, including their impact on financial analyses

Energy Market Modeling Study Areas, Opportunities for 
Enhancement
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IES Plant Modeling and Simulation Scope

• Connect the technical aspects with the economic analysis

• Assess the cost of inserting volatility or, in other terms, the benefits of 
absorbing volatility is necessary to assess the system impact

• System costs driven by volatility arise at all time resolutions (hourly, five 
minutes, seasonally)

• The physical modeling of the system become more and more relevant 
(system inertia) as the time scale decreases



https://ies.inl.govhttps://ies.inl.gov

Financial Framework

• System cost approach (profit analysis is also feasible)

• The system must cover (net) demand with high reliability

• The question to be answered is if the integrated energy system 
helps to decrease the costs of electricity

• We use the term LCOE (levelized cost of energy/electricity), but in 
reality it is an effective levelized cost of covering demand

42
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Financial Analysis Workflow
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Overall RAVEN Optimization Scheme

44

Reliability function

Optimize
Portfolio

Repeat for 
Many Histories

Demand
TemperatureWind SpeedSolar Irradiation

Average
System

Cost

Test
Portfolio

Synthetic time 
history

Cost of 
covering 
demand

Optimal 
dispatch

INL-developed code for 
optimization: RAVEN

Reactor Analysis and Virtual Control 
ENvironment (RAVEN)
Allows researchers to understand 
and manage the probabilistic nature 
of complex systems and their 
numerical representation

Goal: Optimize economic 
performance under technical 
performance constraints and 
assurance of grid resilience.
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IES Open Source Software Tools

• INL released two new RAVEN plug-ins to support Flexible Power Operation and Generation and overall 
Integrated Energy System (IES) design and optimization

• TEAL (Tool for Economic AnaLysis) is a tool designed to support Net Present Value (NPV)/Cash Flow 
analysis for energy systems

• TEAL can be downloaded at: https://github.com/idaholab/TEAL
• HERON (Holistic Energy Resource Optimization Network) enable optimization of IES design, including 

component sizing for multiple energy generators and energy users
• HERON can be downloaded at: https://github.com/idaholab/HERON For more information:

Cristian.Rabiti@inl.gov
Paul.Tabot@inl.gov
Andrea.Alfonsi@inl.gov

Internal rate of return for a 
desalination plant sending outlet 
concentrate to be recycled in an 
NPP cooling system

A. Epiney, et al., Case Study: 
Integrated Nuclear-Driven Water 
Desalination—Providing Regional 
Potable Water in Arizona, September 
2019, INL/EXT-19-55736 

R. Boardman, et al., Net Present 
Value Parametric Study for 
Hydrogen Production Using HERON 
(INL/EXT-55395)

https://github.com/idaholab/TEAL
https://github.com/idaholab/HERON
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We Are Breaking New Ground

• Other efforts exists to optimize energy systems
• What makes the IES approach different

• Nuclear has different requirements that must be considered
• NQA 1
• Safety, licensing
• Reactor operation

• Full probabilistic approach is unique
• Detailed system dynamics

• Leveraging existing and ongoing efforts and toolsets to further enhance 
analysis and system optimization capability
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Why support multiple processes/products beyond 
electricity? Why hydrogen? 
1) Provides energy storage, for electricity production or hydrogen user 

(e.g., chemicals and fuels synthesis, steel manufacturing, ammonia-based fertilizers) 
2) Provides second source of revenue to the generator
3) Provides opportunity for grid services, including reserves and grid regulation

Example: Hydrogen Production via Electrolysis

https://ies.inl.gov
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High Priority Application: Conceptual H2@Scale Energy System*

*Illustrative example, not 
comprehensive

Can hydrogen effectively be a new energy currency for LWRs?
Vision: Leverage hydrogen’s unique ability to address cross-energy sector issues and to enable clean, 
efficient industrial and transportation processes. 

*H2@Scale is a complementary, collaborating program supported by the 
DOE Energy Efficiency & Renewable Energy Fuel Cell Technologies Office.

Hydrogen Attributes:
• Clean and convenient energy 

carrier
• Scalable energy storage
• Vital to fuels and chemicals 

production
• Used to upgrade coal to higher 

value products

Other key H2@Scale Benefits:
• Provides grid resiliency
• Deeply reduces air pollutant 

emissions
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• System design optimization using time 
histories for one year

• Results shown for a selected time history, one 
week period (hourly resolution) 

• Optimized component capacities
• Nuclear Reactor 300 MWe

• Hydrogen Plant Capacity 120 MWe
(shown as negative – electricity input;                                                    
70% turndown limit; H2 market price - $1.75/kg-H2)

• Gas turbine 200 MWe

• Electric battery  100 MWh
• Wind penetration 400 MWe

(100% of mean demand, installed 
capacity, 27% capacity factor)

• Penalty function applied for over or under 
production of electricity.

Example Optimized Hybrid System Performance Results 
INL-Developed Toolset

49Rabiti and Epiney, INL, 2018
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• Evaluation of Hydrogen Production Feasibility for a 
Light Water Reactor in the Midwest
Repurposing existing Exelon plant for H2 production via 
high temperature electrolysis; use of produced 
hydrogen for multiple off-take industries (ammonia and 
fertilizer production, steel manufacturing, and fuel cells) 
(INL/EXT-19-55395)

• Evaluation of Non-electric Market Options for a 
Light-water Reactor in the Midwest
LWR market opportunities for LWRs with a focus on H2 
production using low-temperature and high-temperature 
electrolysis; initial look at polymers, chemicals, and 
synfuels (INL/EXT-19-55090)

Recent Hydrogen Production Analyses for Current Fleet LWRs 

$2.05 
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North Central 
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(AEO 2018)
90% OCF

LTE:
376-tpd H2 
(908 MWe)

95% OCF

HTE:
534-tpd H2 
92.4% OCF

INL issued public-facing reports on in FY19 that provide the foundation for demonstration of using LWRs to 
produce non-electric products:

Example: Analysis results for H2 production, compression and 
delivery prices to meet ammonia plant demand.
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https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest
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Analysis of a Nuclear-Driven Energy Complex in the Upper 
Midwest

PEM
AE, 

PEM

PEM

Steam 
Electrolysis

PEMPEM

Distributed Water 
Electrolysis Plants

Central
Hydrogen

Plant

Refinery /
Petrochemical

Plant

Ammonia-Based
Fertilizers Plant

Direct Reduced
Iron / Electric Arc
Mini Steel Plant

Clean Transportation 
Fleet

Central Clean 
Chemical &

Fuels Synthesis

Regional
Ethanol Plants

Biodigester
Plants

By-Product
CO2

Pipeline 
 

Synfuels
 

 
             

 
               



https://ies.inl.gov

Hydrogen Production Cost Comparisons

52

INL/EXT-19-55090

Low Temperature Electrolysis
24 tonnes per day plant

“nth-of-a-kind” LTE PEM outperforms 
Steam Methane Reforming with LWR cost 

of electricity <$35/MWe-hr
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Hydrogen Production Cost Comparisons

Steam Electrolysis
578 tonnes per day plant

“nth-of-a-kind” steam
electrolysis outperforms SMR 

at LCOE <$30/MWe-hr
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Example: Carbon Feedstock Refinery
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Finding cost-competitive markets for nuclear

6.00

11.00

16.00

21.00

26.00
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W
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)
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150 MWt NG boiler (no pipeline transport) 150 MWt TDL @ $20/MWhe NPP O&M cost

150 MWt TDL @ $25/MWhe NPP O&M cost 150 MWt TDL @ $30/MWhe NPP O&M cost

INL/EXT-20-58884: Markets and Economics for Thermal Power Extraction 
from Nuclear Power Plants for Industrial Processes, June 2020

Specific Industrial Park Concept using nuclear heat and electricity to 
produce chemicals and polymers with minimal CO2 emissions

Cost of High-Pressure Steam Delivery from a Nuclear Power 
Plant to Industrial Users versus Natural Gas Boiler (in 2019$)
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Dynamic Energy Transport and Integration Laboratory (DETAIL)

Grid-in-the-Loop

Human-in-the-Loop

Thermal Energy Generation and Transport

Flexible 
Industrial 
Process
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Dynamic Energy 
Transport & 
Integration Lab 
(DETAIL)

Establishing the experimental 
capability to demonstrate 
coordinated, controlled, and 
efficient transient distribution of 
electricity and heat for power 
generation, storage, and industrial 
end uses. 
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Thermal Energy Distribution 
System

To begin initial operation in December 2020
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Deployed 25 kW High Temperature Electrolysis System  

25 kW HTE Test Facility 
Overview in DETAIL 
within the INL Energy 
Systems Laboratory

Gas alarm and 
Interlock System

Enclosure Interior View

25 kW HTE Test Facility 
Control Station
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Example Test for Non-Spinning Reserve:  
Electrolyzer ramps down in 10 mins while NPP 
dispatches electricity to the grid; then returns to 
full load after one hour.

NPP dispatches 
to gird

Nuclear Power Plant Hydrogen Production Demonstration Projects

• Purpose & Scope:
1. Demonstrate hydrogen production using direct electrical power 
offtake from a nuclear power plant for a commercial, 1-3 MWe, low-
temperature (PEM) electrolysis module

2. Acquaint NPP operators with monitoring and controls procedures 
and methods for scaleup to large commercial-scale hydrogen plants

3. Evaluate power offtake dynamics on NPP power transmission 
stations to avoid NPP flexible operations

4. Evaluate power inverter control response to provide grid contingency 
(inertia and frequency stability), ramping reserves, and volt/reactive 
control reserve

5. Produce hydrogen for captive use by NPPs

6. Produce hydrogen for first movers of clean hydrogen; fuel-cell buses, 
heavy-duty trucks, forklifts, and industrial users

• Laboratory role: Support utilities with project test planning, 
controls and monitoring environment implementation and testing, data 
collection, systems performance evaluation, and project reporting.

Two projects via Public/Private Partnerships:  
(1) Exelon
(2) Energy Harbor Partnership with Xcel Energy 

and APS
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LWR-H2 Demonstration Projects: Exelon, USA

Analysis Report: Evaluation of Hydrogen Production 
for a Light Water Reactor in the Midwest

Purpose:
 Demonstrate hydrogen production using direct electrical 

power offtake from a nuclear power plant and acquaint 
plant operators with methods and controls for scaling up 
to large commercial plants. 

 Evaluate power offtake dynamics and  inverter control 
response to provide grid contingency, ramping reserves, 
and volt/reactive control reserve.

 Produce hydrogen for captive use by NPPs
 Produce hydrogen for first movers of clean hydrogen; 

fuel-cell buses, heavy-duty trucks, forklifts, and industrial 
users

Partners: Nel Hydrogen, ANL, INL, NREL (via DOE)

**Exelon will commence testing within 18-24 
months at a to-be-announced LWR plant.

https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest
https://www.osti.gov/biblio/1569271-evaluation-hydrogen-production-feasibility-light-water-reactor-midwest
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LWR-H2 Demonstration Projects: Davis Besse, Ohio, USA

PRELIMINARY

Hydrogen 
Production

Area

Electrical 
Tie-In

Power 
Block

Industry Consortium of Energy 
Harbor, Xcel Energy, Arizona 

Public Service, DOE Labs
—

The engineering design team will design and 
locate the hydrogen production equipment 
such that the effect on the design and licensing 
basis is mitigated (to the extent practical).

Analysis Report: 
Evaluation of Non-electric 
Market Options for a Light-
water Reactor in the Midwest

https://ies.inl.gov

Davis-Besse Plant in Ohio

**Commence testing in 24-36 months.
Purpose: Produce hydrogen for first movers of 
clean hydrogen; fuel-cell buses, heavy-duty 
trucks, forklifts, and industrial users

https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest
https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest
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Advanced Reactors

Benefits:
• Enhanced safety
• Versatile applications
• Reduced waste
• Apply advanced 

manufacturing to reduce 
costs
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Reactor 
Type

T-Out
(Celsius)

Power Cycle
Power 
Cycle 
Eff.

Carnot 
Eff.

Electrolysis
Electricity

(kWh/kg-H2)

Overall Nuclear 
Fuel

Efficiency

LWR N/A Rankine 32% 50% 55 (PEM) 22%

LWR 300 Rankine 32% 50% 34 (HTSE) 35%

SFR 500
Supercritical 

Rankine
44% 63% 30 (HTSE) 54%

AHTR
(MSR)

700 Sup-crit. CO2 50% 70% 29.5 (HTSE) 62%

VHTR 900 Air Brayton 56% 75% 29 (HTSE) 70%

Electrolysis Efficiencies vs Nuclear Reactor Type

~700-800 C

~750 – 1000 C

~480 – 625 C
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National Reactor Innovation Center (NRIC) and the 
Gateway for Accelerated Innovation in Nuclear (GAIN)

• Established in 2015 as a resource for accelerated 
development of nuclear innovations with lab 
partners
• Comprehensive resource to entire nuclear 

innovation ecosystem at all development stages
• Provides streamlined access to testing, MASL, 

experimental facilities, lab   expertise, and  legacy 
data

• Regulatory expertise (e.g. NRC advanced reactor 
licensing strategy support)

• Financial support

• Provides a capability for building 
and demonstrating reactor 
concepts

• Focused program to enable innovators 
nearing demonstration stage

• Provides access to sites, required 
upgrades, site services, fuel 
material/fabrication facilities, and 
demonstration process support

• Provides regulatory assistance related to 
demonstration

• Facilitates NRC observation/  
learning

Complementary and Coordinated Efforts to Support the 
Nuclear Energy Industry
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NRIC Supporting Technologies and Capabilities

• By 2025, NRIC will develop at least two advanced reactors, extending the legacy of 
American nuclear innovation and establishing a foothold for advanced nuclear in this century.

• Advanced Reactor Demonstration Program (ARDP) – proposals under review

• NRIC is equipped to facilitate the construction and demonstration of advanced reactor systems 
through a suite of services and capabilities. This includes a core, multidisciplinary team that 
can leverage government resources to meet private sector needs.

• Digital Engineering
• Advanced Construction Technologies Initiative
• Integrated Energy Systems
• NRC Coordination
• Experimental infrastructure
• Safety and environmental analysis
• Project Planning & Coordination
• Outreach and communications

https://inl.gov/nric

https://inl.gov/nric
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IES—A key opportunity for flexibility



Thank you!
Questions?



Upcoming Webinars
28 October 2020 Global Potential for Small and Micro Reactor Systems to 

Provide Electricity Access
Dr. Amy Schweikert, Colorado School of Mines, USA

19 November 2020 Neutrino and Gen IV Reactor Systems Prof. Jonathan Link, Virginia Tech, USA

17 December 2020 Development of Multiple-Particle Positron Emission Particle 
Tracking for Flow Measurement

Dr. Cody Wiggins, University of Tennessee, USA
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