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Meet the Presenter GE@ Internaional

Dr. Antoine Gerschenfeld earned his PhD from Ecole Normale Supérieure,
France, in 2012, and has been coordinating R&D on the thermal-hydraulics of
Sodium Fast Reactors at the Commissariat a | Energie Atomique et aus Energies
Alternatives (CEA)'s Thermal-Hydraulics and Fluid Mechanics Section (STMF)
since 2013. In that capacity, he has led the development of a subchannel
thermal-hydraulics code (TrioMC) as well as the development of a tool for
coupling coarse and fine models in a single reactor-scale simulation (MATHYS).
He has also been involved in a number of collaborations: bilateral exchanges
with DOE, JAEA and IPPE; EURATOM projects on liquid-metal reactors; and in
international GIF, NEA and IAEA working groups.

Email: antoine.gerschenfeld @cea.fr



Introduction

LMFR Thermal-
Hydraulics

A. Gerschenfeld

Introduction
Issues
Modelling
Application

Conclusion

Intermationa
~orum-

GE

m [wo of the six Gen4 designs use liquid metal as coolant:

m the Sodium Fast Reactor

— more than 20 in 8 countries; 2 in commercial operation
m the Lead (or LBE) Fast Reactor

— projects in Russia, Belgium, Italy/Romania, USA...
m Liquid metals have many advantages...

m little neutron moderation /absorption
m large working temperature range at ambient pressure
m good to excellent thermal conductivity

m but are not without challenges
— especially in the field of thermal-hydraulics
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Thermal-hydraulics?
A. Gerschenfeld

m the behavior (velocity, temperature, pressure) of all fluids in the reactor:

Introducti S
i m here — the liquid metal (Na, Pb, LBE)
Issues m but also : cover gas, power conversion cycle,...

Modelling m must be evaluated both:

Application m in nominal operation — to assess the loads on structural materials
— and justify their expected lifetime : 60 years!

m in accidental scenarios — to assess the reactor's safety
— and, if necesary, adapt its design

Conclusion

In this presentation

m main thermal-hydraulics issues in LMFRs
m the tools at our disposal to analyze them
m an example application of these tools — to the study of natural convection
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Common features of LMRs

Introduction m quite high working temperatures:

m SFRs: 400° — 550°/650° (average/local)
m LFRs: around the same

— determined by material limits (steel ~ 700°)

Issues
Modelling
Application

m no pressurization — pool-type designs:

Conclusion

m minimize pipe break scenarios (like SMRs!)
m large thermal buffer in accident scenarios
m at top: cover gas

m in SFRs — intermediate loops:
ASTRID primary pool m protect primary from Na/H;O reactions
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quite complex structures: pins, wires/grids

|ssues of interest

m Cladding temperatures:

m nominal state: T < 620°C
= avoid rupture

m accidents : T < ~ 1200°C
= avoid melting

— if possible locally: at least pin-by-pin!

TH phenomena to model

m nominal state: mixing by wires or grids

m accidental states:

m coolant boiling — for SFRs
m cladding rupture = gas release
m partial or total blockage
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Normal operation

m flowrate repartition between S/As
=> optimisation

m core mechanical behavior
< hex can temperatures

Accidental scenarios

m core cooling by inter-wrapper flow
in particular : internal storage

m coupled effects with:

m core neutronics
= point kinetics or more complex
m fuel thermal mechanics

Intermationa
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Hot pool / Core outlet GE

LMFR Thermal-
Hydraulics

Upper Core Structure

A. Gerschenfeld
very complex:

Introduction . m S/A outlet thermocouples
Issues ] m control rod guidelines

Oweingew m core outlet temperature differences:

s m fuel — 550°
m CR tubes — 430°

Hot pool
IHXes

Cold pool [ ‘
Global K. . %7 Issues
Modelling = Y m nominal state:

Anclication thermal fluctuations due to jet mixing

m incidents / accidents :
m hot/cold shocks

— thermal loads
m reliability of core outlet temperature measurements

Conclusion

10: 20718
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very large liquid volume!

Steady-state issues

m core outlet jet shape
— in full and partial regimes

m thermal interface position
— inner vessel thermals:
loads, fluctuations

Accidental issues

m hot / cold shocks on vessel, components

m flow changes at low flowrate:
jet shape change, stratification
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Issues in normal operation

W in steady-state:

m wave formation — thermal loads
m cover gas: reactor slab heating
m in SFRs: vortex formation

— possible gas entrainment!

m during load-following:
m flowrate variation — level changes!

Issues in accidental scenarios

min LFRs : seismic sloshing
— mechanical loads!
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complex components : thousands of tubes!

Issues in normal operation

m performance : pressure drop, heat transfers

m thermal loads during startup/shutdown

Issues in accidental scenarios

International

Forume

m possible 3D effects : in particular, recirculations at low flowrate

m outlet jet behavior in cold pool
(= stratification)

m hot / cold shocks : risk of tube rupture
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even larger than the hot pool!

Nominal state issues

m stratification above |HXes

m |HX outlet jet : shape, stability...

= thermal loads on inner and main vessel

Accidental issues

m jet / stratification changes during:

m loss-of-flow transients — thermal buffer
m dissymetric events (one intermediate loop)
— hot shock propagation
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|ssues

m nominal state: performance

APpump = f(wWpump, Qpump)

m accidental states :

m pressure drop at stop

m overspeed, reverse flow (pump-diagrid break)
= cavitation!

m seizure at high temperatures
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LOWER GRID PLATE ey s Eﬁ?ﬁ‘ﬁ?é;&&k{&%c 0 hyd rau|i cs:
Introduction
m pressure drop
% HIGH PRESSURE COOLANT ; .
Issues R Lo DR ETAT m local flow effects close to inlet pipes
v e ) el . . _
- ‘ i m in SFRs: possible gas accumulation
ore 7 1
H | e (1111
ot poo A
IHXeZ ‘I'IQ ] . .
R—— Accidental issues
Cold pool gy BT
P ' Coog Lo Pressure m thermal dilation (strong neutronic effects!)
Diagrid . 7 BIPENOZELE @) , : ,
Vst cooling Sty LOW PRESSURE CooL AT m dissymetric behavior:
Global FLENUM NNER WAL e b i m single-pump trip, pump-diagrid pipe break
SAFETY ROD ADAPTER — uneven flow at core inlet

: BOTTOM PLATE FOR
Modelling LOW PRESSURE PLENUM

m intermediate loop pump trip

Application
— uneven temperature

Conclusion
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Keep main vessel at cold temperature — very important!
usually uses 10-20% of pump flowrate

Steady-state issues

m complex thermal transfers:
hot pool — cold pool — vessel cooling system

m potential for gas accumulation
— especially in weir-type designs

Accidental scenarios

m possible flow reversal in VCS
— can contribute to thermal buffer
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Some phenomena involve the complete
reactor!

Gas in the primary circuit

B sources:

m free-surface vortices
m entrainment at the weir
m nucleation of dissolved gas in cold
regions
m cladding rupture
m transport: with the flow
bubble coalescence / dissociation!

m accumulation: at top of diagrid

m possible consequences:
gas pocket in core — power transient!
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Decay Heat Removal
m can be done passively in LMRs:
m LM/LM exchangers in hot pool

m passive decay heat removal loop
m LM/air exchanger in chimney

m primary natural convection — many paths:

“normal” path
recirculations between S/As
and in interwrapper region

B in passive circuits:

m avoid freezing!
m natural convection startup

m intermediate loops may also contribute
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mesisen m (single-phase) TH can be described ab initio from the Navier-Stokes equations...
Issues ... but has highly non-linear behavior — range of scales:

Modelling m from turbulent eddies: 10_6m/10_65

ici,': m to the full reactor: 10m / 10°s

Examples = ab initio modelling is very difficult — need for a cut-off scale:

Application

m phenomena above that scale — simulated directly
Conclusion m phenomena below that scale — described by (heuristic) physical models
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= various thermal-hydraulics codes, according to the choice of cut-off :

Scale System (STH) Subchannel (SC) CFD
1 e | Bl B3
. :?ﬁ e E | t.. .': .00006;@6&;%"”0?0. .‘
-~ (b J RN e
Simulation channel (1D) subchannel microscopic (DNS)
scale volume (0D, 3D) (between pins) fine (LES, RANS)
Physical every phenomenon fine geometry nothing (DNS)
models | (heat transfer, pressure drop) | (wires, grids...) | turbulence (LES/RANS)
C:feCESAed CATHARE TrioMC TrioCFD

LMFR Thermal-Hydraulics | 29/01/2020 | 20 / 34
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t{ CFD codes (OpenFOAM, Fluent, TrioCFD...)

m directly model the geometry of a fluid region
m predict turbulence by either :
m simulating it directly (DNS)
— very small meshes (107°m)
m modelling the smallest fluctuations (LES)
— somewhat larger meshes (10™°m)
m modelling all fluctuations by an average dissipation

(Reynolds-Averaged Navier-Stokes)
— large meshes (107%-107>m)

m RANS lowers numerical costs, but :

m the turbulence models must be validated
(numerically or experimentally)
m information on turbulent fluctuations is lost!

m typical computation (10-100 CPUs, 10s of days):

m DNS — 10cm of a single subchannel
m RANS — a few subassembliegy Thermal-Hydraulics | 29/01/2020 | 21 / 34
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m friction caused by the wires
m transverse mixing by these wires
m turbulent heat transfer from the pins

o
 §
n

— must be calibrated on experiments (nowadays)
or on finer simulations (in the future: Hi2Low)

m possible to obtain local fluid /pin temperature in the core at a
reasonable cost :

m nominal state — full core in < 1s !
m transients — a few days x 100 CPUs
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System codes (RELAP, TRACE, CATHARE...)
m the original TH codes (RELAP-1 : 1966!)

m the coarsest mesh possibles :
m pipes in 1D (multi-channel core)
m volumes in 0D, sometimes in coarse 3D

m physical models for all phenomena:
friction, heat transfer...

m but also additional models for full reactor
simulation:

m core: neutronics (usually point kinetics)
B pumps, heat exchangers
m all circuits : primary, intermediate...

= can compute a complete reactor transient...

m ... with low numerical cost! 15 min x 1 core
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Introduction

m Safety transients:
need to model complete reactor — system scale
(with maybe some post-processing to obtain local quantities)

Issues

Modelling
Scales
Codes

m Core design:
Examples

need to minimize pin temperature over complete core — subchannel scale
(maybe with some CFD to check local effects — hot spots above wires, etc.)

Application

Conclusion

m Geometry-dependant phenomena for new designs — CFD
stratification in hot/cold pool — RANS
thermal fluctuations on UCS — LES
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Modelling natural convection in LMRs

m natural convection is a global phenomenon
— natural choice system scale / STH (0D /1D /coarse 3D)

m but pool-type designs are favor complex 3D effects:

m in large pools: jet behavior, stratification
m in the core: radial heterogeneity in S/As,
cooling by inter-wrapper flow

= these are hard to predict at the system scalel!
either by physical models or explicit simulation

Simple approaches

m if there is no local — global feedback:
STH result — local post-processing

m conservative hypotheses, if possible

LMFR Thermal-Hydraulics | 29/01/2020 | 25 / 34
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Effect on decay heat removal

Competition between three paths :
normal primary circuit flow
convection loops between S/As

flow in the inter-wrapper gaps
= only (1) can be modeled in STH!

How to model?

m STH approach :
(2) miscalculated, (3) neglected
= Tcore Overestimated (conservative)
Qprim overestimated (bad)

= an approach including local feedbacks
is needed
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Model everything in CFD
can be done (at CRS4, Framatome...), but :
must recode and validate models already in STH :

m point kinetics
m pumps
m etc...

CFD mesh everywhere, even if not needed
— extra computational cost

Code coupling

m reuse existing codes and models:

STH, subchannel inside S/As, CFD in the pools...

m must interface the codes together

m algorithm needed to ensure a consistent global
simulation
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Thermal coupling

m in CFD : boundary conditions

m hydraulic : uniform velocity
m thermal : external temperature taken from STH

min STH : imposed temperatures at the meshes
inside the domain

Hydraulic coupling

m in CFD : imposed flow
= STH computes the flowrate @ — what feedback?

m to obtain the right @, the STH outside the
domain must “see” the AP from the CFD

= momentum source term F inside
the overlapped domain so that APsry >~ APcrp
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Qcom (%Qnom)
>
I

Context
DHR
Solutions

Results

Validation

Forum®
‘ STH:——
Memen | Flow rate prediction

STH/SC/CFD ——— -

m red: pure STH

: — homogeneous pools

m blue: STH + pool CFD
- — stratified pools

m green: corrected STH
(h = 0 between pools)

m purple: STH + CFD

Conclusion

o st y + subchannel core for IWF

= Qcore Overestimated by up

25 3

to 100% !
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m all physical models introduced must be
established experimentally:

e m from nothing for DNS CFD...
m to everything for the system scale!

— validation of the physical models

m because of the non-linearities of
thermal-hydraulics, interactions between
phenomena may produce new effects
— which must also be validated!

Phenomenon 2

m leads to a hierarchy of experiments :

m separate effect tests (skipped here):

Phenomenon 1 k :
SET : Separate Effect Tests study one phenomenon in detail

IET : Integral Effect Tests " comblrled effe.ct tests: _ _
study interactions (requires large experiments)
m system/industrial tests (integral validation):
everything in a reactor case

SIT : System and Industrial Tests
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Combined effects

impact of 3D effects on natural convection:

m analytical: TALL-3D (KTH)
m more integral: CIRCE (ENEA <+ ALFRED)
m reactor similarity: E-SCAPE (SCK/CEN <+ MYRRHA)

coupling between S/As and inter-wrapper flow:

m analytical: THEADES (KIT)
m coupled to hot pool DHR: PLANDTL-1/2 (JAEA)

both together: possible in large LM experiments
— requires simulated S/As in pool

m CLEAR-S (China)
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Integral scale (public availability)
introduction ISP MO | TGN~ PHENIX end-of-life tests:
e _ ’ ;:f m natural convection — NC test (IAEA/EU)
Modelling R | m cold pool 3D effects — dissymetric test (EU/GIF)
Application _ _ EBR-I| tests:
Context ’ e m (U)LOF — SHRT-17/45R (IAEA)
e , e | =3 m ULOHS — BOP-301/302R (GIF)
Solutions i - = " e
Results ‘ 3 > 25 2o e FFTF tests:
Validation =5 X oS aee m ULOF — LOFWOS+#13 (IAEA)
Overview e e oS s s e — benchmark in progress
Combined effects . SO ’ e, ,’ /
Integral W TS OEC (\ Dl L IAEA and GIF play a key role!

Conclusion
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m LMRs give rise to many interesting thermal-hyhdraulics phenomena
— we need to describe them:

m in normal operation
m and in accidental scenarios
m range of codes, according to modelling scale:

m 100% simulation — DNS CFD (in single-phase)
m then LES (preserves fluctuations) and RANS CFD (destroys fluctuations)

m then subchannel
m system scale (100% modelling)
m in many cases, a single code will be suitable for a given study

m local 3D phenomena: with fluctuations — LES CFD, without — RANS CFD
m assembly TH : single S/A — CFD, whole core — subchannel
m reactor transients — STH

m however, some cases may be unsuitable for a single scale
— in that case, code coupling is a possibility!

m most of the work lies in validating the physical models
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Upcoming Webinars

25 February 2020
(8 pm US EST)

26 March 2020

29 April 2020

SFR Safety Design Criteria (SDC) and Safety Mr. Shigenobu Kubo, JAEA, Japan

Design Guidelines(SDGs)

MicroReactors: A Technology Option for
Accelerated Innovation

GIF VHTR Hydrogen Production Project
Management Board

Dr. DV Rao, LANL, USA and Dr. Jess Gehin, INL, USA

Dr. Sam Suppiah, CNL, Canada



