Materials Challenges for Generation IV Reactors # **Summary / Objectives:** The Generation IV reactors offer significant advantages over typical light water reactors including increased power conversion efficiency, passive safety features and in some cases process heat for other applications (e.g. hydrogen production). These families of reactors include 3 fast reactors [sodium fast reactor (SFR), lead fast reactor (LFR) and gas-cooled fast reactor (GFR)], one thermal reactor [very high temperature reactor (VHTR)] and two fast or thermal reactors [supercritical water reactor (SCWR) and molten salt reactor (MSR)]. The extreme environments in these families of reactors create significant challenges to materials ranging from high doses from a fast neutron flux (SFR, LFR, GFR, SCWR and MSR), more corrosive environments from molten salt (MSR) or lead coolants (LFR) and high temperatures in the helium-cooled reactor concepts (e.g. GFR and VHTR). This presentation will discuss the materials challenges in Generation IV reactor concepts and summarize radiation effects in reactor metals proposed for these concepts over prototypic irradiation conditions # **Meet the Presenter:** Stuart Maloy is a Team Leader for MST-8 (materials at radiation and dynamic extremes) at Los Alamos National Laboratory and is the advanced reactor core materials technical leader for the Nuclear Technology Research and Development's Advanced Fuels campaign and the NEET Reactor Materials Technical Lead for DOE-NE. He has applied his expertise to characterizing and testing the properties of metallic and ceramic materials in extreme environments such as under neutron and proton irradiation at reactor relevant temperatures. This includes testing the mechanical properties (fracture toughness and tensile properties) of Mod 9Cr-1Mo, HT-9, 316L, 304L, Inconel 718, Al6061- T6 and Al5052 after high energy proton and neutron irradiations using accelerators and fast reactors. #### **Radiation Damage:** Displacement damage occurs when enough energy (approximately 25 eV) is transferred to an atom producing a or many Frenkel defects. Though a large number of Frenkel defects (vacancy / self-interstitials) annihilated in short time, some defects remain and make cluster. ### A wide range of materials properties are determined on the mesoscale: As the result of the clustering, the accumulated defect grows to mesoscale. Unlike with nanoscale defects, mesoscale defects affect the various material properties. This is the mechanism of the radiation damage. #### Stress/Strain curves of 316L stainless steel after irradiation: By the irradiation, yield stress of 316L stainless steel is increased (hardening) and elongation is decreased (embrittlement). ### **Nanostructured Ferritic Alloys:** Nanostructured ferritic alloys (or Oxide Dispersion Strengthen alloys, ODS), which is made by mechanical alloying, have a fine distribution of oxide particles nano features within the material. This nanostructure brings increase of the strength, creep resistance, irradiation resistance. Therefore, these alloys show promise as advanced radiation tolerant materials. # Reactor operating conditions: Reactor Each GIF systems have particular operating conditions: - Coolant - Temperature - Lifetime Dose | Reactor Type | Fuel Materials | Fuel
Temperature | Pellet to
Clad bond | Coolant
Type | Structural
Materials for
Core
Internals | Lifetime
Dose (dpa) | Structural
Temperatu
res | |---|--|---|------------------------|-----------------|---|--|--------------------------------| | Gen IV/ Lead Fast
Reactor LFR | U/PuN; TRUN
(enriched to N ¹⁵) | 500-600C | L ead | PborLBE | Ferritic/Mart
ensitic Steel
alloys | 150-200 | 400-600C | | Gen IV/ Sodium
Fast Reactor SFR | Metal(U-TRU-
10%Zr Alloy),
MOX(TRU
bearing) | 600-800C
(metal fuel)
800-2000C
(Oxide fuel) | Sodium | Sodium | Ferritic/Mart
ensitic Steel
alloys | 150-200 | 400-550C | | Gen IV/ Gas cooled
Fast Reactor GFR | UPuC/SiC
(50/50%) with
20% Pu content;
Solid Solution fuel
with SiC/SiC
clad ding | 2000 + | Helium | Helium | Nickel
Superalloys
/Ceramic
Composites | 80 | 500-1 200 C | | Fusion Energy | N/A | N/A | N/A | Pb-Li | F/M steels;
Vanadium
alloys;
Ceramics | 150 | 300-1000C | | LWR – PWR, BWR | UO2 | 800-1600C | Helium | Water | 316L ferritic
pressure
vessel,
Zircalloy
cladding | Cladding
~10 dpa,
Internals
up to 80
dpa | 200-3 00C | | Very High
Temperature
Reactor (VHTR,
NGNP) | TRISO | 800-2000C | Intimate
contact | Helium | Ni-based
alloys,
ceramics and
graphite | ~10 dpa | 700-1 000 C | | Supercritical Water
Reactor (SCWR) | UO2 | 800-2000C | Helium | Water | F/M steels,
austenitic
steels | 10-30
thermal
100-150
Fast | 300-600C | | Molten Salt Reactor
(MSR) | Na, Zr, U, Pu
fluo ride s | 700-800C | N/A | N/A | Ni-based
alloys,
graphite | 100-150
dpa | 600-800C | #### **Materials Performance Issue:** Because of the difference of operating condition, each GIF systems have particular material performance issues. | Reactor type | Primary Materials | Performance Issues | | | |--|--|---|--|--| | Light Water
Reactors
(PWR/BWR) | Ferritic pressure vessel steels, Fe-
based austenitic stainless steels,
zirconium alloys | IGSCC, IASCC, Fuel clad
mechanical interaction, hydriding,
Radiation embrittlement (DBTT),
hydrogen embrittlement | | | | Very High
Temperature
Reactor (VHTR) | Ni-based superalloys, Graphite,
ferritic/martensitic steels, W/Mo
Alloys, SiC/SiC composites | Helium embrittlement, creep
strength, swelling, RIS,
transmutation, toughness, oxidation | | | | Sodium Fast
Reactor (SFR) | Fe-based austenitic SS,
Ferritic/martensitic steels, | Radiation Embrittlement (DBTT),
toughness, helium embrittlement,
swelling, RIS, corrosion, FCCI | | | | Lead Fast
Reactor (LFR) | Fe-based austenitic SS,
Ferritic/martensitic steels, | Radiation Embrittlement (DBTT),
toughness, helium embrittlement,
swelling, RIS, corrosion, FCCI, liquid
metal embrittlement | | | | Supercritical
Water Reactor
(SCWR) | Ferritic pressure vessel steels, Fe-
based austenitic stainless steels,
zirconium alloys,
ferritic/martensitic steels | IGSCC, IASCC, Fuel clad
mechanical interaction, hydriding,
Radiation/helium embrittlement
(DBTT), swelling, RIS, corrosion,
toughness | | | | Gas Fast
Reactor | Ceramics (carbides, nitrides),
ceramic composites, nickel
superalloys | Helium embrittlement, creep
strength, swelling, RIS,
transmutation, toughness, oxidation | | | | Molten Salt
Reactor | Ni-based alloys, graphite, coatings | Corrosion, Helium embrittlement,
creep strength, swelling, RIS,
transmutation, toughness, oxidation | | |