

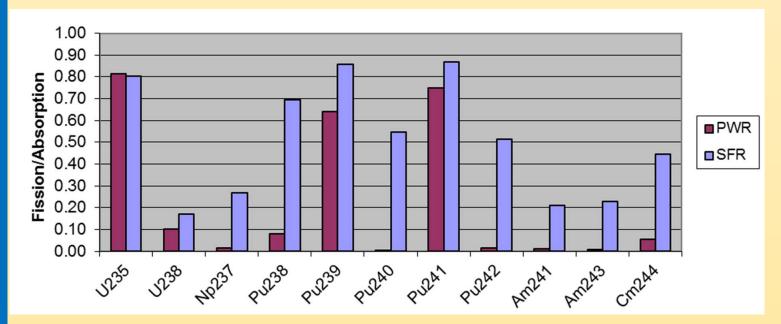
Sodium Cooled Fast Reactors (SFR)

Summary / Objectives:

This webinar will give an overview of distinctive fast reactor characteristics and identify key performance benefits. A brief history of development and international experience with SFRs will be reviewed. Finally, the Generation-IV international collaboration on SFR technology research and development will be described.

Meet the Presenter:

Dr. Robert Hill is co-National Technical Director for the DOE multi-Laboratory Advanced Reactor Technologies Program; this work includes technology innovation, safety and licensing, advanced materials, energy conversion technology, instrumentation and controls. He also serves as U.S. Member for the Generation-IV Sodium Cooled Fast Reactor and System Integration Project.



Fuel Cycle Implications of Energy Spectrum :

Fast reactors are typically intended for closed (recycle) fuel cycle with uranium conversion and resource extension

- Higher actinide generation is suppressed
- Neutron balance is favourable for recycled transuranics (Pu, Np, and Am)

Uranium Utilization :

Uranium utilization is one of the benefits of the fast reactor technologies Through the conventional once-through systems, we have to dispose much amount of depleted uranium on the enrichment process, and total utilization of uranium is about half percent. Recycling the uranium used in fast reactor provides over 90 percent of uranium utilization.

		Once-through systems		
	PWR-50GWd/t	PWR-100GWd/t	VHTR	Fast Burner
Burnup, %	5	10	10.5	22.3
Enrichment, %	4.2	8.5	14.0	12.5
Utilization, %	0.6	0.6	0.4	0.8

Recycling Systems

	LWR		LWR-Fast Burner		Fast
	UOX	MOX	LWR-UOX	Fast Burner	Converter
Power sharing, %	90	10	57	43	100
Burnup, %	5	10	5	9	-
Enrichment, %	4.2	-	4.2	12.5	-
Utilization, %	0.7		1.4		~99

Sodium as a Fast Reactor Coolant :

Thermophysical and thermal-hydraulic properties of sodium are excellent and allow:

Use of conventional stainless steels

• Smaller core with higher power density, lower enrichment, and lower heavy metal inventory

• Demonstrated natural circulation and overall passive safety performance

• Use of sodium codified in ASTM standards

Thermophysical Properties:		
Excellent Heat Transfer	√ +	
Low Vapor Pressure	✓ +	
High Boiling Point	✓ +	
Low Melting Point	\checkmark	
Material Properties:		
Thermal Stability	✓ +	
Radiation Stability	✓ +	
Material Compatibility	✓ +	
Neutronic Properties:		
Low Neutron Absorption	✓ +	
Minimal Activation	1	
Negligible Moderation	✓ +	
Supports Passive Safety	✓ +	
Cost:		
Initial Inventory	✓ +	
Make-Up Inventory	✓ +	
Low Pumping Power	✓ +	
Hazards:		
Sodium reacts with air and water		

Worldwide Experience :

Extensive testing resulted in sodium as the primary coolant in nearly all (landbased) fast reactors constructed during the last 50 years.

Reactor	Country	MWth	Operation	Coolant
	Country		Operation	
EBR 1	USA	1.4	1951-63	NaK
BR-2	Russia	2	1956-1957	Mercury
BR-10	Russia	8	1959-71, 1973-2002	Sodium
DFR	UK	60	1959-77	NaK
EBR II	USA	62.5	1963-94	Sodium
Fermi 1	USA	200	1963-72	Sodium
Rapsodie	France	40	1966-82	Sodium
BOR-60	Russia	50	1968-	Sodium
SEFOR	USA	20	1969-1972	Sodium
OK-550/BM-40A	Russia	155 (7 subs)	1969-	Lead Bismuth
BN 350*	Kazakhstan	750	1972-99	Sodium
Phenix	France	563	1973-2009	Sodium
PFR	UK	650	1974-94	Sodium
KNK 2	Germany	58	1977-91	Sodium
Joyo	Japan	140	1978-	Sodium
FFTF	USA	400	1980-93	Sodium
BN 600	Russia'	1470	1980-	Sodium
Superphenix	France	3000	1985-98	Sodium
FBTR	India	40	1985-	Sodium
Monju	Japan	714	1994-96, <mark>2010</mark> -	Sodium
CEFR	China	65	2010-	Sodium
PFBR	India	1250	2016?	Sodium
BN-800	Russia	2000	2014-	Sodium
ASTRID	France	1500	2025?	Sodium
PGSFR	Korea	400	2028	Sodium

Generation-IV R&D Collaboration on SFR :

Several collaborative Generation-IV R&D Projects are being conducted to explore technology innovations which target to achieve the eight goals for the Generation IV nuclear energy systems

Criteria	Goal: Generation IV nuclear energy systems will
Safety and Reliability-1	excel in safety and reliability.
Safety and Reliability-2	have a very low likelihood and degree of reactor core damage.
Safety and Reliability-3	eliminate the need for offsite emergency response.
Economics-1	will have a clear life-cycle cost advantage over other energy sources.
Economics-2	will have a level of financial risk comparable to other energy projects.
Sustainability-1	will provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production.
Sustainability-2	will minimize and manage their nuclear waste and notably reduce the long-term stewardship burden, thereby improving protection for the public health and the environment.
Proliferation Resistance and Physical Protection-1	increase the assurance that they are a very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism.

SFR System Research Plan :

System Research Plan was updated and released in July 2013. (and further update was conducted in October 2019)

Contents:

Development Targets and Design Requirements 5 SFR R&D Projects 4 SFR Design Concepts

LoopPoolSmall
ModularJSFRESFRKALIMERAFR-100Image: Second conduction of the second conduction of